6A. Degradation of inorganic building materials

Ing. Martin Keppert, Ph.D.

Department of materials engineering and chemistry
224 35 45 63

keppert@fsv.cvut.cz

web: http://tpm.fsv.cvut.cz/

Open office: A 329 Tue 9:00 – 11:00
6A. „degradation“ - content

- degradation (corrosion) agents
 - temperature
 - water
 - atmosphere
 - salts
 - biodegradation

- degradation of important building materials
 - aggregates, building stone, mortar, gypsum...
 - concrete
Degradation of building materials

- **gradual, spontaneous**, slow process in which material losses own characteristic properties due to environment.

- **corrosion environment** – external agents taking effect on the material (water – ground, rain, surface; temperature, chemicals in soil and air).

- Degradation of material: loss of strength and cohesion, dissolution, appearance..

- Corrosion of construction: **lifetime of construction**, reparation costs, loss of material, costs due to forced outage.

- **Prevention of corrosion**: selection of material (..concrete composition), protection of construction against aggressive environment.
Corrosion actions

- **physical** caused by physical forces, no chemical reactions

 (frost damage of concrete)

- **chemical** chemical reactions of material with environments components causing degradation of material

 (sulphate degradation of concrete)

- **biocorrosion** material is damaged by action of animals, plants and microorganisms and their metabolic products; *(dry rot)*
Chemical, physical and biological action often works **simultaneously** and **promote each other**

Chemical reaction causes physical force (expansion of its products)

Bacteria produce aggresive chemicals

Mechanicaly damaged wall is easily chemicaly attacked

The degradation protection has to be complex, against all corrosion actions
Corrosion action
Degradation due to temperature changes

- response of material to temperature changes:
 - very high temperature (fire): thermal decomposition of the material
 - „common temperature changes“ by cycling day-night, winter-summer and by sun shining (-20 to 40° C)

Thermal expansion: response of material to temperature changes \rightarrow tension on binder+aggregates interface
\rightarrow cracks

- loss of strength and cohesion, water attack to construction
Degradation due to temperature changes

- temperature gradient in construction

- temperature gradient
- different expansion of warm and cold parts of construction
Degradation due to water action

- water in building constructions

1. water vapor: component of atmosphere, everywhere higher temperature = higher possible absolute air humidity warm air may contain more vapor the the cold one relative humidity = degree of saturation by vapor at given temperature

2. equilibrium dampness: content of water in material depends on: air humidity, temperature, type of material is caused by vapor condensation in material a) bonded water – adsorbed on surface non-moveable, not dangerous, does not freeze
Degradation due to water action

- water in building constructions

2. equilibrium dampness: content of water in material
 b) free water: liquid in porous system of material
 origin: vapor condensation, ground water, rain
 movement in pores: up – by capillary action
 smaller pores = higher elevation
down – by gravity
 equilibrium of gravity and capillary
 elevation: cm to 2 meters above ground
Degradation due to water action

- **freezing-thawing action**: ice - 10 % higher volume than liquid water. Ice in pores expands and acts by **crystallization pressure** on the pore walls.
Degradation due to water action

- Water is solvent and transport medium for other corrosion agents

1. Anorganic and organic salts
2. Components of atmosphere (CO\textsubscript{2}, NO\textsubscript{x}, SO\textsubscript{x})
3. Soluble components of material: Ca(OH)\textsubscript{2}, CaSO\textsubscript{4} \cdot 2H\textsubscript{2}O

→ Chemical corrosion

- Water is necessary for life of bacteria, fungi and algae

→ Biocorrosion
Degaration by atmosphere

- physical: *abrasion* of constructions by particles (dust, sand) in wind

- aerosol = dust + water drops → visual damage
Degradation by atmosphere

Corrosion agents in atmosphere

\(\text{CO}_2\) natural occurrence in atmosphere 0.03 %
carbonic acid – the weakest acid, salts carbonates

\[\text{H}_2\text{O} + \text{CO}_2 \leftrightarrow \text{H}_2\text{CO}_3\]

1. carbonation of lime mortars (+) and concrete (-)

\[\text{Ca(OH)}_2 + \text{CO}_2 \leftrightarrow \text{CaCO}_3 + \text{H}_2\text{O}\]

mortar: + hardening
concrete: - reinforcement corrosion, disturbance of
 equilibrium composition of cement binder
Degradation by atmosphere

Corrosion agents in atmosphere

CO₂:

2. dissolution of carbonates
calcite \(\text{CaCO}_3 \): limestone, marble, marl, lime mortars

\[
\text{CaCO}_3 + \text{H}_2\text{O} + \text{CO}_2 \leftrightarrow \text{Ca}^{2+} + 2\text{HCO}_3^-
\]

- insoluble calcite
- water (rain, ground)
- soluble (1.6 g/l) calcium hydrogencarbonate
- reversible process \(\leftrightarrow \)

→ calcite dissolution (high CO₂ in water)

← calcite precipitation (low CO₂ in water, water evaporation)
Degradation by atmosphere

Corrosion agents in atmosphere

Sulphur oxides SO\(_2\) and SO\(_3\)

Nitrogen oxides NO\(_x\) (NO, NO\(_2\), N\(_2\)O\(_3\)....)

origin: industry, transport, energy production

acid-forming oxides: forms acid with water (rain, aerosol)

(acid rain): H\(_2\)SO\(_3\), H\(_2\)SO\(_4\), HNO\(_2\), HNO\(_3\)

\[
\text{Ca(OH)}_2 \text{ in concrete and mortars– is neutralized to salts}
\]

carbonates CO\(_3^{2-}\) – salts of carbonic acid (the weakest acid)

are dissolved by other acids:

\[
\text{CaCO}_3 + 2 \text{HNO}_3 \rightarrow \text{Ca(NO}_3)_2 + \text{CO}_2 + \text{H}_2\text{O}
\]

loss of strength, dissolution of limestone and marl – statues, historical buildings
Degradation by soluble salts

Common ions in pore solution in building materials:
Ca$^{2+}$, Na$^+$, NH$_4$$^+$
SO$_4$$^{2-}$, Cl$^-$, NO$_3$$^-$, CO$_3$$^{2-}$

Origin of salts in buildings:
- materials component (CaSO$_4$.2H$_2$O in gypsum)
- dissolved in ground water which attacks constructions
- products of corrosion by acid rains
- metabolic products of microorganisms and animals
- winter maintenance of roads and pavements
Degradation by soluble salts: mechanism

1. salt dissolves in water
 unsaturated solution (*unsaturated = water can dissolve even more salt*)
2. the unsaturated solution is transported by pore système (capillary elevation)
3. formation of saturated solution
 (*saturated – solution with the highest possible concentration of salt – e.g. NaCl 360 g/l*)
 →saturation due to **water evaporation** (summer)
4. further evaporation → **crystallization** of salt from saturated solution
Degradation by soluble salts: on surface

A) the saturated solution is formed on the surface of construction → crystals are visible - **efflorescence**

aesthetic problem – historical buildings, frescoes... efflorescence does not damage the construction
Degradation by soluble salts: crystallization in pore system

B) saturation is reached in pores of material (close to surface) → crystals are formed in the pores (subflorescence)
growing crystals generate crystallization pressure – crystals press on the pore walls → up to 100 MPa – higher than the material´s strength→
→ cracks in construction, flaking of plaster, disintegration of construction
Capillary elevation of salt solution in wall

Evaporation of salt solution in pore
Degradation by soluble salts: cyclic hydration and dehydration

Hydrates: crystals containing some molecules of water in structure

<table>
<thead>
<tr>
<th></th>
<th>Specific volume cm3 g$^{-1}$</th>
<th>Expansion crystals volume cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$SO$_4$</td>
<td>0,373</td>
<td>0,373 (100 %)</td>
</tr>
<tr>
<td>Na$_2$SO$_4$·10H$_2$O</td>
<td>0,683</td>
<td>1,549 (415 %)</td>
</tr>
</tbody>
</table>

Hydration and dehydration depend on humidity of air: in winter are stable hydrates, in summer crystals without water. **Hydration pressure!**
Degradation by soluble salts: formation of insoluble salts

crystallization of \textbf{calcite} on the surface of concrete:

\[
\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}
\]

- \text{solution of Ca(OH)}_2 in pores of concrete
- \text{from air}
- \text{insoluble calcite forms crystals on surface of concrete}
Biodegradation
Biodegradation: bacteria

- unicellular microorganisms
- both auto and heterothrophic
- wide range of environments

sulphur and nitrifying bacteria:
- are everywhere (water, soil, **cattle sheds**)
- normal temperature, feed, neutral pH...
- acquire energy by oxidation of S and N compounds
 → „produce“ sulphates SO_4^{2-} and nitrates NO_3^{-} →
- **source of soluble salts → salt degradation**

prevention: cleanliness, dry, light
Biodegradation:
rot and fungi

- heterotrophic organisms → acquire energy by oxidation of organic substances: **wood, dust, fabric, paper**
- environment: feed, damp, normal temperature
- damages: sap rot – damage wooden constructions
 mycelium fibers grow in walls – **mechanical damage**
 metabolic production of organic acids → dissolve calcite
- prevention: **fungicides**, dry, cleanness – no dust
mycelium

frUITING body
Biodegradation: algae

- autotrophic organisms → production of CO_2 → support
dissolution of calcite CaCO_3 (limestone, mortars)
- production of organic acid → dissolution of CaCO_3

- form colour slimy coatings – water structures
- algae growing in pores → expansion and mechanical damage
Biodegradation:

Plants and Animals

- **Mechanical damage:** growing roots, animals action in walls (insects, rats)

- **Animals excrements:** hosts bacteria → production of acids and salts → salt corrosion, dissolution of calcite
Biodegradation

- prevention of all kinds of biodegradation:
 - dry and light environment
 - cleanness
 - proper construction – insulation, water drainage
 - maintenance of building – reduction of ground water attack, rain in, presence of animals and plants...
Degradation of building materials
Degradation of building materials

- freezing-thawing and water action – affect all porous building materials
- chemical degradation – depends on chemical composition of the material
- biodegradation – wood is most sensitive, other materials are attacked by biodegradation in damp environment
Aggregates, stone-cutted products

- **aggregates made from magmatic rocks** (dominant in Czech Republic):
 - dense – no pores = no damage by ice and water
 - high chemical resistance

- **limestone aggregates**
 - calcite CaCO_3: attacked by acid rains and by CO_2 dissolution
Aggregates, stone-cutted products

- aggregates with high content of amorphous SiO$_2$ (opal, chalcedony) → causes Alkali-silica reaction - ASR

amorphous SiO$_2$ + NaOH (KOH)

→ gel of sodium silicate

→ absorbs water

→ expansion
Aggregates, stone-cutted products

- prevention of alkali-silica reaction
 1. no amorphous SiO$_2$ in aggregates
 maximum content – few percent
 highest content in river sediments (USA, China)
 2. reduce alkali content (Na$_2$O, K$_2$O) in cement
Aggregates, stone-cutted products

- **sandstone**
 - porous – sensitive to freezing-thawing and water action
 - usually contains some calcite CaCO_3 – attacked by acid rains and biocorrosion
Aggregates, stone-cutted products

- **crust on sandstone**: calcite in sandstone reacts with SO$_2$ – in polluted air (cities) →
 product is gypsum CaSO$_4$.2H$_2$O

- dark colour - dust
Aggregates, stone-cutted products

- **marlstone**: porous, high content of CaCO$_3$ → very sensitive to water, freezing-thawing, acid rains, biocorrosion → more suitable for interiors
Degradation of concrete
Physical degradation of concrete

- mechanical damage: flowing water, plants...
- freezing-thawing damage: depends on porosity
 higher water/cement ratio → higher porosity → higher freezing-thawing damage

- thermal degradation of concrete:
 1. decomposition of hydration products (CSH, CAH) (from 200°C)
 2. dehydration of Ca(OH)$_2$ (from 500°C)
 → loss of strength

- different thermal expansion of binder and aggregates: cracks on interface between binder and aggregates
Chemical degradation of concrete

1. **kind:** dissolution and leaching of binder
2. **kind:** chemical reactions of binder with environment resulting to **non-binding products** (frequently followed by efflorescence)
3. **kind:** chemical reactions with formation of **voluminous products → expansion**

All chemical corrosion processes cause loss of strength and cohesion

 Extreme cases: disintegration of concrete

4. **corrosion of steel reinforcement**
Concrete: 1. kind
dissolution and leaching

- dissolution of Ca(OH)$_2$ from cement binder in pore water and consequent **leaching out of Ca(OH)$_2$**

- dangerous water: „hungry water“ (soft) – with low content of Ca$^{2+}$ and other minerals (rain and river water)

- leaching is dangerous for water and underground structures

- prevention – proper waterproofing
Concrete: 1. kind

dissolution and leaching

- reduction of Ca(OH)_2 concentration in concrete causes disruption of equilibrium between components of cement binder → results to decomposition of CSH and CAH hydrates → decrease of strength
- decrease of pH due to lower Ca(OH)_2 → damage of steel reinforcement
- calcite efflorescence is formed on the surface
Concrete: 2. kind
non-binding products

- **acid corrosion**: reaction of Ca(OH)$_2$ from cement binder with acid components of environment: acids of sulphur and nitrogen (H$_2$SO$_4$, H$_2$SO$_3$, HNO$_3$) from acid rain and biocorrosion
 - Ca$^{2+}$ salts are formed from Ca(OH)$_2$ – no binding ability
 - decrease of Ca(OH)$_2$ concentration results to disruption of equilibrium in cement binder and consequent decomposition of CSH and CAH binder
 - formed salt may be soluble → efflorescence

\[
\text{Ca(OH)}_2 + 2 \text{HNO}_3 \rightarrow \text{Ca(NO}_3)_2 + 2 \text{H}_2\text{O} \quad \text{efflorescence}
\]
\[
\text{Ca(NO}_3)_2 \cdot 2 - 4\text{H}_2\text{O}
\]
Concrete: 2. kind
non-binding products

- **carbonation of concrete:** reaction of Ca(OH)$_2$ from binder with CO$_2$ from air or water (water structures)

 - calcite CaCO$_3$ is formed

 \[
 \text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}
 \]

 - decrease of Ca(OH)$_2$ causes:
 - decrease of pH → **corrosion of steel reinforcement**
 - disruption of binder equilibrium
 - in extreme cases may start carbonation of CSH and CAH hydrates to SiO$_2$, Al$_2$O$_3$ → decrease of strength
Concrete: 2. kind

non-binding products

- Observation of concrete carbonation by phenolphthalein: colour change at pH 8-10

- No colour: pH ≈ 8
- Carbonated concrete no Ca(OH)$_2$
- Reinforcement is damaged

- Violet: pH > 10
- High Ca(OH)$_2$
- OK
Concrete: 3. kind
expansive products

- chemical reactions having **voluminous products** → are formed and crystallized in concrete and generated crystallization pressure – products expansion damages structure of concrete: decrease of strength, disintegration

![Diagram showing sulfate attack on grains boundaries and expansion of binder](image-url)
Concrete: 3. kind expansive products

- sulphate expansion (gypsum expansion)
sulphate attack on concrete: ground water
 sea water
 sulphates from aggregates

sulphides: may by found in aggregates, are spontaneously oxidized to sulphates

Test of aggregates on presence of sulphides and sulphates:
1. HCl decomposes sulphides to H_2S (smells)
2. sulphates are precipitated by $BaCl_2$ as insoluble $BaSO_4$
Concrete: 3. kind expansive products

- sulphate expansion
 - mechanism:
 - 1. formation of gypsum

\[
\text{Ca(OH)}_2 + \text{SO}_4^{2-} + 2 \text{H}_2\text{O} \rightarrow \text{CaSO}_4 \cdot 2\text{H}_2\text{O} + 2\text{OH}^- \\
\]

formation of gypsum from SO\(_2\) from air:

\[
\text{Ca(OH)}_2 + \text{SO}_2 + \frac{1}{2}\text{O}_2 + \text{H}_2\text{O} \rightarrow \text{CaSO}_4 \cdot 2\text{H}_2\text{O} \\
\]
Concrete: 3. kind expansive products

- sulphate expansion
 - mechanism:

2. formation of ettringite

\[3\text{CaO}.\text{Al}_2\text{O}_3.6\text{H}_2\text{O} + 3(\text{CaSO}_4.2\text{H}_2\text{O}) + 19\text{H}_2\text{O} \rightarrow 3\text{CaO}.\text{Al}_2\text{O}_3.\text{CaSO}_4.32\text{H}_2\text{O} \]

hydrate C₃AH₆ from concrete
gypsum
ettringite expansion 2.65x
Concrete: 3. kind expansive products

- protection of concrete against sulphate expansion:
 - prevent from contact of concrete with high-sulphate water
 - sea structures:
 - cement with low C₃A (to 5 %)
 - low porosity of concrete (low w/c)
 - adding of pozzolana (slag) → it reacts with Ca(OH)₂ instead of gypsum formation
Concrete: 3. kind expansive products

- **magnesium expansion**

 1. **kind** reaction of soluble Mg$^{2+}$ salts (ground and sea water) with Ca(OH)$_2$ in concrete

 \[
 \text{MgSO}_4 + \text{Ca(OH)}_2 + 2 \text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2 + \text{CaSO}_4 \cdot 2\text{H}_2\text{O}
 \]

 voluminous product

 2. **kind** reaction of MgO (v cementu) with water:

 \[
 \text{MgO} + \text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2
 \]

 slow process: takes place in settled concrete
Concrete: salt corrosion

- **chloride corrosion**
 origin of chlorides: winter maintenance salt, sea water

CAH hydrates react with chlorides (NaCl, CaCl₂) to **Friedel's salt 3CaO.Al₂O₃.CaCl₂.10H₂O** (non-binding)

1. expansion of Friedel's salt
2. decrease of strength due to decrease of CAH concentration

- **salt corrosion**: efflorescence and crystallization pressure
Concrete: salt corrosion

- **sea water corrosion**: leaching out of Ca(OH)$_2$ and decomposition of CSH and CAH hydrates
 reaction of CAH to Friedel’s salt
 sulphate expansion
 magnesium expansion
 crystalization and cyclic hydration-dehydration of salts in pores of concrete

- **prevention of salt corrosion of concrete**
 low porosity (low w/c)
 low C$_3$A in concrete
 low Ca(OH)$_2$ in concrete – use of blended cements with pozzolana content
Concrete: corrosion of steel reinforcement

- fresh concrete: very high pH (alkaline ≈ 12) steel is **passivated** – layer of Fe(OH)$_3$ protects steel against corrosion

- carbonated concrete: pH slowly decreases → the passive layer is destroyed when pH decreases app. to 9,5 → corrosion of reinforcement takes place

- **loss of contact between concrete and reinforcement**
Concrete:
corrosion of steel reinforcement

- reinforcement protection
 - good concrete – no cracks – carbonation starts in cracks
 - stainless steel reinforcement – expensive
cathodic protection of reinforcement
Degradation of materials based on calcium carbonate CaCO₃

- Calcite CaCO₃ is dominant component of lime mortars and plasters, limestone, marlstone
- CaCO₃ is dissolved by all acids – both inorganic and organic (acid rains, biodegradation)

CaCO₃ + 2 HNO₃ → Ca(NO₃)₂ + CO₂ + H₂O

CaCO₃ + H₂SO₃ + \(\frac{1}{2} \) O₂ + H₂O → CaSO₄.2H₂O + CO₂

- Mortars with cement – higher corrosion resistance
Degradation of gypsum

- gypsum = typical air binder
- solubility of CaSO₄·2H₂O: 2.4 g/l
- dissolves mainly in flowing water
- solution of CaSO₄·2H₂O is acid → steel corrosion
 gypsum can not be reinforced
- gypsum in wet environment: hydrofobization
 (hydrofobobized gypsum repels water)
- thermal stability of gypsum: very low
 gypsum decomposes from 60 °C, from 120 °C
 decomposes rapidly to hemihydrate CaSO₄·1/2 H₂O
Degradation of ceramics

- ceramics: high resistance to thermal and chemical action (dissolves only in HF)
- physical corrosion: degradation by freezing-thawing action and by \textbf{salts}

- resistance depends on granulometry of raw materials (Winkler diagram)

- unfired bricks: sensitive to flood
Fort Jefferson, Florida
Degradation of glass

- weak point - brittleness
- chemical corrosion: glass dissolves in HF and in highly alkaline solutions (cheap or old glass in dishwasher)
- increase of resistivity to alkalies: boiling of glass in water or acid – surface layer in enriched by SiO₂ – more resistant to alkalies
Wood degradation

- biodegradation – rot, insects
- oscillation of temperature and humidity: causes contraction and swelling → cracks
- chemical degradation: wood is attacked by oxidising agents, acids and bases → depolymeration and oxidation of cellulose, change of color and mechanical properties
- wood of coniferous trees is more chemically stable than wood of deciduous
- wood protection: fungicides, biocides, fire protection
Degradation of synthetic polymers

- depends on composition of the polymer
- generally: high chemical stability

 low thermal stability: softening, melting, burning, thermal decomposition

 UV radiation (sun) causes **photochemical reactions** in polymer – decomposition of polymer chain (embrittlement)

- biocorrosion of polymers: organic compounds serve as nutrient for fungi (rot) and bacteria
Goals

- describe principals of physical corrosion of building materials
- degradation by water action
- degradation by aggressive gasses
- behaviour of salt in porous materials
- biodegradation
- chemical degradation of concrete
6B. Analytical chemistry
Analytical chemistry in civil engineering

- **analysis of materials**
 composition of cement, lime etc., content of sulphates in aggregates

- **environmental analysis**
 composition of water: drinking, mixing water for concrete, ground water – contains dangerous components for building materials
 composition of soil: contamination by toxics

- **waste analysis before landfilling**
 rubble composition, contaminated soils (oil, heavy metals Hg, Cu, Pb, Cd...)
Sampling

- **representative sample** contains all components of the material in the same ratio as are present in the sampled material.

- Sampling of liquids and gasses: usually homogeny – no problem.

- Sampling of solids: the material is crushed, homogenized, quartered.

- **Sampler for solids and powders**

- **Quartering**
Chemical analysis

- qualitative: composition of sample (elements, ions, molecules)

- quantitative: determination of concentration of components

- conventional: **volumetry** and **gravimetry**

- instrumental: by help of instruments
Volumetry - titration

- for determination of concentration of a compound in liquid solution
- unknown solution = **analyte**
- **reagent** = standard solution of a compound (titrant)
- principle: analyte reacts with **equivalent** amount of reagent according known chemical reaction
- endpoint of titration – by visual **indicator** (point of equivalence)
Volumetry - titration

- **acid-base titration:**
 - for determination of acid concentration by help of KOH reagent
 - acid reacts with a base
 - endpoint indicated by pH measurement (colour change of a chemical indicator, pH meter)

\[
\text{analyte} \quad \text{reagent}
\]

\[
\text{H}_2\text{SO}_4 + 2 \text{KOH} \leftrightarrow \text{K}_2\text{SO}_4 + 2 \text{H}_2\text{O}
\]
Volumetry - titration

\[\text{H}_2\text{SO}_4 + 2 \text{KOH} \leftrightarrow \text{K}_2\text{SO}_4 + 2 \text{H}_2\text{O} \]

\[\frac{n_{\text{ACID}}}{n_{\text{KOH}}} = \frac{1}{2} \]

\[n_{\text{ACID}} = \frac{1}{2} \cdot n_{\text{KOH}} \]

\[c_{\text{ACID}} \cdot V_{\text{ACID}} = \frac{1}{2} \cdot c_{\text{KOH}} \cdot V_{\text{KOH}} \]

\[c_{\text{ACID}} = \frac{1}{2} \cdot \frac{c_{\text{KOH}} \cdot V_{\text{KOH}}}{V_{\text{ACID}}} \]
Gravimetry

- Analyte is precipitated by a chemical reaction in the form of a known and insoluble product.
- Fe$^{3+}$ ions are precipitated in alkaline environment as insoluble Fe(OH)$_3$.

Fe$^{3+}$ + 3 OH$^-$ → Fe(OH)$_3$

$$C_{Fe} = \frac{n_{Fe}}{V} = \frac{m_{Fe(OH)3}}{M_{Fe(OH)3}}$$

filtration, drying, weighing